Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579698

RESUMO

Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer's disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs "mitovesicles." We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.


Assuntos
Doença de Alzheimer , Síndrome de Down , Exossomos , Vesículas Extracelulares , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Camundongos
2.
Dev Neurobiol ; 79(7): 656-663, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31278881

RESUMO

Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716 )]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre-existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high-resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12-month-old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal-exosomal pathway.


Assuntos
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Síndrome de Down/patologia , Endossomos/patologia , Endossomos/ultraestrutura , Exossomos/patologia , Exossomos/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Neurônios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...